Velg type oppgaver:
Antall oppgaver: 9
Gitt følgende matriser:
$$A = \left( \begin{array}{ccc} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{array} \right)\!\!, B = \left( \begin{array}{cccc} 1 & 4 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ \end{array} \right)\!\!, C = \left( \begin{array}{cc} 0 & 1 \\ 1 & 4 \\ 0 & 0 \end{array} \right)\!\!, D = \left( \begin{array}{cc} 1 & 4 & 0 \\ 0 & 2 & 0 \end{array} \right)\!\!, E = \left( \begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right) $$Gitt et ligningssett:
$$ \begin{aligned} x - 3y + 2z &= -12 \\ 2x + y - z &= 5 \\ 4x + 2y - z &= 7 \end{aligned} $$Gitt et ligningssett:
$$ \begin{aligned} 3x + 2y + 4z &= 4 \\ x - 2y + 5z &= 7 \\ 2x + y - 3z &= -15 \end{aligned} $$Gitt et ligningssett:
$$ \begin{aligned} x + 5y - z &= 1 \\ 2x - y + 2z &= -1 \\ 5x + 3y + 3z &= -1 \end{aligned} $$Gitt et ligningssett:
$$ \begin{aligned} 4x + y - 2z &= 5 \\ x - 2y + 2z &= 9 \\ x + 2y - z &= 1 \end{aligned} $$Gitt matrisen:
$$ A = \left( \begin{array}{ccc} 2 & 1 & t \\ 1 & 3t & 25 \\ 0 & t & 8 \end{array} \right) $$Gitt en matrise:
$$A = \left( \begin{array}{ccc} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 5 & 6 & 0 \end{array} \right)$$Gitt tre matriser:
$$ A = \left( \begin{array}{ccc} 3 & 1 & 0 \\ -2 & 4 & -1 \\ 4 & 1 & 0 \end{array} \right), B = \left( \begin{array}{ccc} -1 & 0 & 1 \\ 4 & 0 & -3 \\ 18 & -1 & -14 \end{array} \right), C = \left( \begin{array}{ccc} -1 \\ 2 \\ 8 \end{array} \right) $$@ 2025 Kunnskapsgnist (Lisensvilkår og Personvernerklæring)