icon
Kunnskapsgnist
Logg inn
MatematikkFysikkOm oss

Laplace transform

Formelsamling for Laplace transformasjoner

Publisert 20. november 2023
Redigert 10. august 2025

USN
2
Matematikk 2 ved USN

Laplace transformen tar en tidsavhengig funksjon, $f(t)$, og gjør den om til en frekvensavhengig funksjon, $F(s)$:

$$F(s) = \mathcal{L}(f(t)) = \int_0^{\infty} e^{-st} f(t) \; dt$$

Selv om vi kan bruke formelen for å finne Laplace transformen, er det ofte raskere og enklere å bruke tabeller:

Nr.$f(\textcolor{blue}{t})= \mathcal{L}^{-1}(F(\textcolor{red}{s}))$$F(\textcolor{red}{s}) = \mathcal{L}(f(\textcolor{blue}{t}))$ GjelderUtregning
1$1$$\frac{1}{\textcolor{red}{s}}$$\textcolor{red}{s} > 0$årsak
2$\textcolor{blue}{t}$$\frac{1}{\textcolor{red}{s}^2}$$\textcolor{red}{s} > 0$årsak
3$\textcolor{blue}{t}^n$$\frac{n!}{\textcolor{red}{s}^{n+1}}$$\textcolor{red}{s} > 0, \quad n = \{1,2,3,\cdots\}$
4$e^{a\textcolor{blue}{t}}$$\frac{1}{\textcolor{red}{s}-a}$$\textcolor{red}{s} > a$årsak
5$\textcolor{blue}{t} e^{a\textcolor{blue}{t}}$$\frac{1}{(\textcolor{red}{s}-a)^2}$$\textcolor{red}{s} > a$
6$\textcolor{blue}{t}^n e^{a\textcolor{blue}{t}}$$\frac{n!}{(\textcolor{red}{s}-a)^{n+1}}$$\textcolor{red}{s} > a, \quad n = \{1,2,3,\cdots\}$
7$\sin(b \textcolor{blue}{t})$$\frac{b}{\textcolor{red}{s}^2 + b^2}$$\textcolor{red}{s} > 0$årsak
8$\cos(b \textcolor{blue}{t})$$\frac{\textcolor{red}{s}}{\textcolor{red}{s}^2 + b^2}$$\textcolor{red}{s} > 0$årsak
9$e^{a\textcolor{blue}{t}}\sin(b \textcolor{blue}{t})$$\frac{b}{(\textcolor{red}{s}-a)^2 + b^2}$$\textcolor{red}{s} > a$
10$e^{a\textcolor{blue}{t}}\cos(b \textcolor{blue}{t})$$\frac{\textcolor{red}{s}-a}{(\textcolor{red}{s}-a)^2 + b^2}$$\textcolor{red}{s} > a$
11$u(\textcolor{blue}{t}-a)$$\frac{1}{\textcolor{red}{s}} e^{-a\textcolor{red}{s}}$$\textcolor{red}{s} > 0, \quad a \ge 0$årsak
12$\delta(\textcolor{blue}{t})$$1$$\textcolor{red}{s} > 0$årsak
13$\delta(\textcolor{blue}{t-a})$$e^{-a\textcolor{red}{s}}$$\textcolor{red}{s} > 0, \quad a \ge 0$årsak
14$g(\textcolor{blue}{t}) + h(\textcolor{blue}{t})$$\mathcal{L}(g(\textcolor{blue}{t})) + \mathcal{L}(h(\textcolor{blue}{t}))$Laplace transformasjonen er lineær
15$ag(\textcolor{blue}{t})$$a\mathcal{L}(g(\textcolor{blue}{t}))$$a$ er konstantLaplace transformasjonen er lineær
16$h(t)u(t-a)$$e^{-as}\mathcal{L}(h(t+a))$$a > 0$årsak
17$h(t-a)u(t-a)$$e^{-as}\mathcal{L}(h(t))$$a > 0$årsak
18$f'(t)$$sF(s) - f(0)$derivasjonårsak
19$f''(t)$$s^2F(s) - sf(0) - f'(0)$derivasjonårsak
20$\int_0^t g(\tau) \: d \tau$$\frac{1}{s}G(s)$integrasjonårsak
Nei!
Nei
Tja
Ja
Ja!
Ble du utfordret?
Lærte du noe?
Ble du motivert?
📩 Send ønske 📩
👍🏼 Ros og ris 👎🏼
🛠️ Meld feil 🛠️
Logg inn
Symboler:
★ Utfordring ★
Dypdykk Dypdykk Dypdykk
☰ Metode ☰
Bonus Bonus Bonus
Video Video Video

@ 2025 Kunnskapsgnist (Lisensvilkår og Personvernerklæring)